How to Use Matrices to Solve Systems of Linear Equations
 Or row reduction in 60 minutes

G.W. Stanton © 2012
www.highermathhelp.com
Wow Your Friends! Version View the video.

Outline

Row Reduction in 60 Minutes
G.W. Stanton
(C) 2012

View the video.
Introduction
Row Operations
Reduced Form
Solving a System An Example Guidelines

Number of
Solutions
Summary

For tutoring by the author, contact
Higher Math Help.

0 Introduction
1 Row Operations

2 Reduced Form

3 Solving a System

- An Example
- Guidelines

4 Number of Solutions

View as Slide Show or Video

If you are viewing this lesson...

■ ... by clicking through the slides, keep in mind that you can also watch the video for a guided presentation!

■... as a video, keep in mind that you can also click through the slides at your own pace at www.highermathhelp.com, where this lesson is available as a PDF file.

Outline

Row Reduction in 60 Minutes
G.W. Stanton
(C) 2012

View the video.
Introduction
Row Operations

Reduced Form

Solving a System
An Example
Guidelines
Number of
Solutions
Summary

For tutoring by the author, contact
Higher Math Help.

1 Introduction
2 Row Operations
3 Reduced Form
4 Solving a System - An Example

- Guidelines

5 Number of Solutions

Audience

This lesson is for you if you already know how to solve

$$
\left.\begin{array}{rl}
x+y & =9 \\
2 x-y & =0
\end{array} \quad \text { (two variables } x \text { and } y\right)
$$

and you want to learn a method for solving

$$
\begin{aligned}
3 x+6 y+12 z & =9 \\
2 x+4 y-4 z & =6 \\
y+4 z & =7 \quad \text { (three variables } x, y, \text { and } z)
\end{aligned}
$$

or systems of linear equations with more than three variables. The method we'll cover can be applied to various kinds of problems, but we'll stick to systems of linear equations.

What's in a Name?

Gauss-Jordan Elimination

Two methods for solving systems of linear equations have similar names. In both methods, we can get the solution from a matrix, like the one below,
$\left[\begin{array}{rrr|r}1 & 0 & 0 & -11 \\ 0 & 1 & 0 & 7 \\ 0 & 0 & 1 & 0\end{array}\right]$
but each method uses a different type of matrix.
Two Methods of Solution
Method Type of Matrix

Gaussian elimination row echelon form

Gauss-Jordan elimination reduced row echelon form
We will be learning about Gauss-Jordan elimination, which builds off of Gaussian elimination.

Overview

We will solve systems of linear equations in three stages. Before we get into details, the basic gist is as follows.

1. Convert system of equations to augmented matrix, a convienent way of representing the system without having to write $+,=, x, y$, or z !

$$
\begin{aligned}
3 x+6 y+12 z & =9 \\
2 x+4 y-4 z & =6 \\
y+4 z & =7
\end{aligned} \quad \longrightarrow \quad\left[\begin{array}{rrr|r}
3 & 6 & 12 & 9 \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right]
$$

2. Change rows of matrix, using allowable "operations", until matrix is "reduced."
3. Convert reduced matrix to new system of equations which is much easier to solve and has same solution (or solutions) as original system.

Rows Versus Columns

 60 MinutesView the video.

Row Operations
Reduced Form
Solving a System An Example Guidelines

Number of
Solutions
Summary

For tutoring by the author, contact Higher Math Help.

In matrices (the plural form of the word matrix)...

- Rows are horizontal.
- Columns are vertical.

Rows and Columns in a Matrix

Why the Vertical Line?

Rows Versus Columns

 60 MinutesG.W. Stanton (C) 2012

View the video.
Introduction
Row Operations
Reduced Form
Solving a System An Example Guidelines

Number of Solutions Summary

In matrices (the plural form of the word matrix)...

- Rows are horizontal.
- Columns are vertical.

Rows and Columns in a Matrix

$\left[\begin{array}{rrr|r}3 & 6 & 12 & 9 \\ 2 & 4 & -4 & 6 \\ 0 & 1 & 4 & 7\end{array}\right]$

Row

Why the Vertical Line?

Rows Versus Columns

 60 MinutesG.W. Stanton (C) 2012

View the video.
Introduction
Row Operations
Reduced Form
Solving a System An Example Guidelines

Number of Solutions Summary

In matrices (the plural form of the word matrix)...
■ Rows are horizontal.

- Columns are vertical.

Rows and Columns in a Matrix
$\left[\begin{array}{rrr|r}3 & 6 & 12 & 9 \\ 2 & 4 & -4 & 6 \\ 0 & 1 & 4 & 7\end{array}\right]$

Row

Why the Vertical Line?

For tutoring by the author, contact Higher Math Help.

Rows Versus Columns

In matrices (the plural form of the word matrix)...
■ Rows are horizontal.

- Columns are vertical.

Rows and Columns in a Matrix

$\left[\begin{array}{rrr|r}3 & 6 & 12 & 9 \\ 2 & 4 & -4 & 6 \\ 0 & 1 & 4 & 7\end{array}\right]$

Row
$\left[\begin{array}{rrr|r}3 & 6 & 12 & 9 \\ 2 & 4 & -4 & 6 \\ 0 & 1 & 4 & 7\end{array}\right]$

Column

Why the Vertical Line?

It's a reminder that the matrix represents a system of equations: the line shows where the $=$ would go.

Outline

Row Reduction in 60 Minutes

G.W. Stanton

(C) 2012

View the video.
Introduction

Row Operations

Reduced Form
Solving a System An Example Guidelines

Number of
Solutions
Summary

For tutoring by the author, contact
Higher Math Help.

1 Introduction

2 Row Operations

3 Reduced Form

4 Solving a System - An Example

- Guidelines

5 Number of Solutions

Which Operations Are Allowable?

The operations we're allowed to use when putting a matrix in reduced form (reducing it), are called ...

The Elementary Row Operations

- Multiply a row by a nonzero constant.
- Add a multiple of one row to another.

■ Interchange two rows (the rows need not be adjacent to each other).

Before discussing why each operation should be used, we will first consider examples of how each operation is used.

Multiplying a Row by a Nonzero Constant

 60 MinutesG.W. Stanton (C) 2012

View the video.
Introduction

Row Operations

Reduced Form
Solving a System An Example Guidelines

Number of Solutions Summary

For tutoring by the author, contact Higher Math Help.

We can pick any row and multiply its entries by any number (except 0).

Example

Let's multiply Row 1 by $\frac{1}{3}$.

$$
\left[\begin{array}{rrr|r}
3 & 6 & 12 & 9 \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right] \xrightarrow{\frac{1}{3} R_{1}}\left[\begin{array}{rrr|r}
? & * & * & * \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right]
$$

Why ca Notes

1 Write $\frac{1}{3} R_{1}$ above the arrow to show you multiplied Row 1 by $\frac{1}{3}$
2 Why can't we multiply by 0 ?

Multiplying a Row by a Nonzero Constant

 60 MinutesG.W. Stanton (C) 2012

View the video.
Introduction

Row Operations

Reduced Form
Solving a System An Example Guidelines

Number of Solutions Summary

For tutoring by the author, contact Higher Math Help.

We can pick any row and multiply its entries by any number (except 0).

Example

Let's multiply Row 1 by $\frac{1}{3}$.

$$
\left[\begin{array}{rrr|r}
3 & 6 & 12 & 9 \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right] \xrightarrow{\frac{1}{3} R_{1}}\left[\begin{array}{rrr|r}
1 & ? & * & * \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right]
$$

Why ca Notes

1 Write $\frac{1}{3} R_{1}$ above the arrow to show you multiplied Row 1 by $\frac{1}{3}$
2 Why can't we multiply by 0 ?

Multiplying a Row by a Nonzero Constant

 60 MinutesG.W. Stanton (C) 2012

View the video.
Introduction

Row Operations

Reduced Form
Solving a System An Example Guidelines

Number of Solutions Summary

For tutoring by the author, contact Higher Math Help.

We can pick any row and multiply its entries by any number (except 0).

Example

Let's multiply Row 1 by $\frac{1}{3}$.

$$
\left[\begin{array}{rrr|r}
3 & 6 & 12 & 9 \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right] \xrightarrow{\frac{1}{3} R_{1}}\left[\begin{array}{rrr|r}
1 & 2 & ? & * \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right]
$$

Why ca Notes

1 Write $\frac{1}{3} R_{1}$ above the arrow to show you multiplied Row 1 by $\frac{1}{3}$
2 Why can't we multiply by 0 ?

Multiplying a Row by a Nonzero Constant

 60 MinutesG.W. Stanton (C) 2012

View the video.
Introduction

Row Operations

Reduced Form
Solving a System An Example Guidelines

Number of Solutions Summary

For tutoring by the author, contact Higher Math Help.

We can pick any row and multiply its entries by any number (except 0).

Example

Let's multiply Row 1 by $\frac{1}{3}$.

$$
\left[\begin{array}{rrr|r}
3 & 6 & 12 & 9 \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right] \xrightarrow{\frac{1}{3} R_{1}}\left[\begin{array}{rrr|r}
1 & 2 & 4 & ? \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right]
$$

Why ca Notes

1 Write $\frac{1}{3} R_{1}$ above the arrow to show you multiplied Row 1 by $\frac{1}{3}$
2 Why can't we multiply by 0 ?

Multiplying a Row by a Nonzero Constant

 60 MinutesG.W. Stanton (C) 2012

View the video.
Introduction

Row Operations

Reduced Form
Solving a System An Example Guidelines

Number of Solutions Summary

For tutoring by the author, contact Higher Math Help.

We can pick any row and multiply its entries by any number (except 0).

Example

Let's multiply Row 1 by $\frac{1}{3}$.

$$
\left[\begin{array}{rrr|r}
3 & 6 & 12 & 9 \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right] \xrightarrow{\frac{1}{3} R_{1}}\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right]
$$

Why ca Notes

1 Write $\frac{1}{3} R_{1}$ above the arrow to show you multiplied Row 1 by $\frac{1}{3}$
2 Why can't we multiply by 0 ?

Multiplying a Row by a Nonzero Constant

 60 MinutesG.W. Stanton (C) 2012

View the video.
Introduction

Row Operations

Reduced Form
Solving a System An Example Guidelines

Number of Solutions Summary

For tutoring by the author, contact Higher Math Help.

We can pick any row and multiply its entries by any number (except 0).

Example

Let's multiply Row 1 by $\frac{1}{3}$.

$$
\left[\begin{array}{rrr|r}
3 & 6 & 12 & 9 \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right] \xrightarrow{\frac{1}{3} R_{1}}\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right]
$$

Why can we multiply Row 1 by $\frac{1}{3}$?

Notes

1 Write $\frac{1}{3} R_{1}$ above the arrow to show you multiplied Row 1 by $\frac{1}{3}$
2 Why can't we multiply by 0?

Multiplying a Row by a Nonzero Constant

We can pick any row and multiply its entries by any number (except 0).

Example

Let's multiply Row 1 by $\frac{1}{3}$.

$$
\left[\begin{array}{rrr|r}
3 & 6 & 12 & 9 \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right] \xrightarrow{\frac{1}{3} R_{1}}\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right]
$$

We can multiply Row 1 by $\frac{1}{3}$ because we can multiply an equation by $\frac{1}{3}$.

$$
3 x+6 y+12 z=9 \xrightarrow{\text { Mult. by } \frac{1}{3}} x+2 y+4 z=3
$$

Notes

1 Write $\frac{1}{3} R_{1}$ above the arrow to show you multiplied Row 1 by $\frac{1}{3}$
2 Why can't we multiply by 0 ?

Multiplying a Row by a Nonzero Constant

We can pick any row and multiply its entries by any number (except 0).

Example

Let's multiply Row 1 by $\frac{1}{3}$.

$$
\left[\begin{array}{rrr|r}
3 & 6 & 12 & 9 \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right] \xrightarrow{\frac{1}{3} R_{1}}\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right]
$$

We can multiply Row 1 by $\frac{1}{3}$ because we can multiply an equation by $\frac{1}{3}$.

$$
3 x+6 y+12 z=9 \xrightarrow{\text { Mult. by } \frac{1}{3}} x+2 y+4 z=3
$$

Notes

11 Write $\frac{1}{3} R_{1}$ above the arrow to show you multiplied Row 1 by $\frac{1}{3}$
2 Why can't we multiply by 0 ?

Multiplying a Row by a Nonzero Constant

We can pick any row and multiply its entries by any number (except 0).

Example

Let's multiply Row 1 by $\frac{1}{3}$.

$$
\left[\begin{array}{rrr|r}
3 & 6 & 12 & 9 \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right] \xrightarrow{\frac{1}{3} R_{1}}\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right]
$$

We can multiply Row 1 by $\frac{1}{3}$ because we can multiply an equation by $\frac{1}{3}$.

$$
3 x+6 y+12 z=9 \xrightarrow{\text { Mult. by } \frac{1}{3}} x+2 y+4 z=3
$$

Notes

1 Write $\frac{1}{3} R_{1}$ above the arrow to show you multiplied Row 1 by $\frac{1}{3}$.

Multiplying a Row by a Nonzero Constant

We can pick any row and multiply its entries by any number (except 0).

Example

Let's multiply Row 1 by $\frac{1}{3}$.

$$
\left[\begin{array}{rrr|r}
3 & 6 & 12 & 9 \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right] \xrightarrow{\frac{1}{3} R_{1}}\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right]
$$

We can multiply Row 1 by $\frac{1}{3}$ because we can multiply an equation by $\frac{1}{3}$.

$$
3 x+6 y+12 z=9 \xrightarrow{\text { Mult. by } \frac{1}{3}} x+2 y+4 z=3
$$

Notes

1 Write $\frac{1}{3} R_{1}$ above the arrow to show you multiplied Row 1 by $\frac{1}{3}$.
$\boxed{2}$ Why can't we multiply by 0 ?

Multiplying a Row by a Nonzero Constant

We can pick any row and multiply its entries by any number (except 0).

Example

Let's multiply Row 1 by $\frac{1}{3}$.

$$
\left[\begin{array}{rrr|r}
3 & 6 & 12 & 9 \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right] \xrightarrow{\frac{1}{3} R_{1}}\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right]
$$

We can multiply Row 1 by $\frac{1}{3}$ because we can multiply an equation by $\frac{1}{3}$.

$$
3 x+6 y+12 z=9 \xrightarrow{\text { Mult. by } \frac{1}{3}} x+2 y+4 z=3
$$

Notes

1 Write $\frac{1}{3} R_{1}$ above the arrow to show you multiplied Row 1 by $\frac{1}{3}$.
2 Multiplying by 0 would eliminate an equation.

Adding a Multiple of One Row to Another

 60 MinutesWe can pick any rows and any number.

Example

Let's multiply Row 1 by -2 , then add the result to Row 2, changing only the row to which we add.

$$
\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right] \xrightarrow{-2 R_{1}+R_{2}}\left[\begin{array}{lll|l}
1 & 2 & 4 & 3 \\
? & * & * & * \\
0 & 1 & 4 & 7
\end{array}\right]
$$

What does this process look like if we convert back to equations?

To mentally compute the new Row 2, calculate one entry at a time. If necessary, write $\left[\begin{array}{cccc}-2 & -4 & -8 & -6\end{array}\right]$ (this is $-2 R_{1}$) above the original matrix.

Adding a Multiple of One Row to Another

 60 MinutesWe can pick any rows and any number.

Example

Let's multiply Row 1 by -2 , then add the result to Row 2, changing only the row to which we add.

$$
\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right] \xrightarrow{-2 R_{1}+R_{2}}\left[\begin{array}{lll|l}
1 & 2 & 4 & 3 \\
0 & ? & * & * \\
0 & 1 & 4 & 7
\end{array}\right]
$$

What does this process look like if we convert back to equations?

To mentally compute the new Row 2, calculate one entry at a time. If necessary, write $\left[\begin{array}{cccc}-2 & -4 & -8 & -6\end{array}\right]$ (this is $-2 R_{1}$) above the original matrix.

Adding a Multiple of One Row to Another

 60 MinutesWe can pick any rows and any number.

Example

Let's multiply Row 1 by -2 , then add the result to Row 2, changing only the row to which we add.

$$
\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right] \xrightarrow{-2 R_{1}+R_{2}}\left[\begin{array}{lll|l}
1 & 2 & 4 & 3 \\
0 & 0 & ? & * \\
0 & 1 & 4 & 7
\end{array}\right]
$$

What does this process look like if we convert back to equations?

To mentally compute the new Row 2, calculate one entry at a time. If necessary, write $\left[\begin{array}{cccc}-2 & -4 & -8 & -6\end{array}\right]$ (this is $-2 R_{1}$) above the original matrix.

Adding a Multiple of One Row to Another

 60 MinutesWe can pick any rows and any number.

Example

Let's multiply Row 1 by -2 , then add the result to Row 2, changing only the row to which we add.

$$
\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right] \xrightarrow{-2 R_{1}+R_{2}}\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 0 & -12 & ? \\
0 & 1 & 4 & 7
\end{array}\right]
$$

What does this process look like if we convert back to equations?

To mentally compute the new Row 2, calculate one entry at a time. If necessary, write $\left[\begin{array}{cccc}-2 & -4 & -8 & -6\end{array}\right]$ (this is $-2 R_{1}$) above the original matrix.

Adding a Multiple of One Row to Another

 60 MinutesWe can pick any rows and any number.

Example

Let's multiply Row 1 by -2 , then add the result to Row 2, changing only the row to which we add.

$$
\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right] \xrightarrow{-2 R_{1}+R_{2}}\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 0 & -12 & 0 \\
0 & 1 & 4 & 7
\end{array}\right]
$$

What does this process look like if we convert back to equations?

To mentally compute the new Row 2, calculate one entry at a time. If necessary, write $\left[\begin{array}{cccc}-2 & -4 & -8 & -6\end{array}\right]$ (this is $-2 R_{1}$) above the original matrix.

Adding a Multiple of One Row to Another

 60 MinutesWe can pick any rows and any number.

Example

Let's multiply Row 1 by -2 , then add the result to Row 2, changing only the row to which we add.

$$
\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right] \xrightarrow{-2 R_{1}+R_{2}}\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 0 & -12 & 0 \\
0 & 1 & 4 & 7
\end{array}\right]
$$

What does this process look like if we convert back to equations?

Adding a Multiple of One Row to Another

 60 MinutesWe can pick any rows and any number.

Example

Let's multiply Row 1 by -2 , then add the result to Row 2, changing only the row to which we add.

$$
\begin{gathered}
{\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right] \xrightarrow{-2 R_{1}+R_{2}}\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 0 & -12 & 0 \\
0 & 1 & 4 & 7
\end{array}\right]} \\
-2(x+2 y+4 z=3) \\
+\quad 2 x+4 y-4 z=6 \\
-12 z=0
\end{gathered}
$$

Adding a Multiple of One Row to Another

We can pick any rows and any number.

Example

Let's multiply Row 1 by -2 , then add the result to Row 2, changing only the row to which we add.

$$
\begin{gathered}
{\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right] \xrightarrow{-2 R_{1}+R_{2}}\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 0 & -12 & 0 \\
0 & 1 & 4 & 7
\end{array}\right]} \\
-2(x+2 y+4 z=3) \\
+\quad 2 x+4 y-4 z=6 \\
-12 z=0
\end{gathered}
$$

Tip

To mentally compute the new Row 2, calculate one entry at a time. If necessary, write $\left[\begin{array}{cccc}-2 & -4 & -8 & -6\end{array}\right]$ (this is $-2 R_{1}$) above the original matrix.

Interchanging Two Rows

 60 MinutesG.W. Stanton (C) 2012

View the video.
Introduction

Row Operations

Reduced Form
Solving a System An Example Guidelines

Number of Solutions Summary

We can interchange any two rows, even if they aren't next to each other.

Example

Let's switch Rows 2 and 3.

$$
\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 0 & -12 & 0 \\
0 & 1 & 4 & 7
\end{array}\right] \xrightarrow{R_{2} \leftrightarrow R_{3}}\left[\begin{array}{lll|l}
1 & 2 & 4 & 3 \\
? & ? & ? & ? \\
? & ? & ? & ?
\end{array}\right]
$$

What does this step look like if we convert back to equations?

Why Can We Interchange Any Two Rows?

For tutoring by the author, contact Higher Math Help.

Interchanging Two Rows

 60 MinutesG.W. Stanton (C) 2012

View the video.
Introduction

Row Operations

Reduced Form
Solving a System

An Example

 GuidelinesNumber of Solutions Summary

We can interchange any two rows, even if they aren't next to each other.

Example

Let's switch Rows 2 and 3.

$$
\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 0 & -12 & 0 \\
0 & 1 & 4 & 7
\end{array}\right] \xrightarrow{R_{2 \leftrightarrow} \leftrightarrow R_{3}}\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right]
$$

What does this step look like if we convert back to equations?

Why Can We Interchange Any Two Rows?

For tutoring by the author, contact Higher Math Help.

Interchanging Two Rows

 60 MinutesG.W. Stanton (C) 2012

View the video.
Introduction

Row Operations

Reduced Form
Solving a System An Example Guidelines

Number of Solutions Summary

We can interchange any two rows, even if they aren't next to each other.

Example

Let's switch Rows 2 and 3.

$$
\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 0 & -12 & 0 \\
0 & 1 & 4 & 7
\end{array}\right] \xrightarrow{R_{2 \leftrightarrow} \leftrightarrow R_{3}}\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right]
$$

What does this step look like if we convert back to equations?

Interchanging Two Rows

 60 MinutesG.W. Stanton (C) 2012

View the video.
Introduction

Row Operations

Reduced Form
Solving a System An Example Guidelines

Number of Solutions Summary

We can interchange any two rows, even if they aren't next to each other.

Example

Let's switch Rows 2 and 3.

$$
\begin{array}{rlrl}
{\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 0 & -12 & 0 \\
0 & 1 & 4 & 7
\end{array}\right]} & \xrightarrow{R_{2 \leftrightarrow} \leftrightarrow R_{3}}\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right] \\
x+2 y+4 z & =3 & \longrightarrow & x+2 y+4 z
\end{array}=3 \begin{aligned}
& \\
&-12 z=0
\end{aligned} \quad \begin{array}{rlr}
y+4 z & =7 \\
y+4 z & =7 &
\end{array}
$$

Why Can We Interchange Any Two Rows?

For tutoring by the author, contact Higher Math Help.

Interchanging Two Rows

We can interchange any two rows, even if they aren't next to each other.

Example

Let's switch Rows 2 and 3 .

$$
\begin{array}{rlrl}
{\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 0 & -12 & 0 \\
0 & 1 & 4 & 7
\end{array}\right]} & \xrightarrow{R_{2 \leftrightarrow} \leftrightarrow R_{3}}\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right] \\
x+2 y+4 z & =3 & \longrightarrow & x+2 y+4 z
\end{array}=3 \begin{aligned}
& \\
-12 z & =0
\end{aligned}
$$

Why Can We Interchange Any Two Rows?

Interchanging Two Rows

We can interchange any two rows, even if they aren't next to each other.

Example

Let's switch Rows 2 and 3 .

$$
\begin{aligned}
& {\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 0 & -12 & 0 \\
0 & 1 & 4 & 7
\end{array}\right] \xrightarrow{R_{2} \leftrightarrow R_{3}}\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right] } \\
& x+2 y+4 z=3 \\
&-12 z=0 \longrightarrow \\
& y+4 z=7
\end{aligned}
$$

Why Can We Interchange Any Two Rows?

Since the new system of equations has the same equations as the previous step does, only in a different order, it has the same solution (or solutions). Don't fret: the other two operations don't change the solution either!

Outline

Row Reduction in 60 Minutes

G.W. Stanton

(C) 2012

View the video.
Introduction
Row Operations
Reduced Form
Solving a System
An Example
Guidelines
Number of
Solutions
Summary

For tutoring by the author, contact
Higher Math Help.

1 Introduction
2 Row Operations

3 Reduced Form

4 Solving a System - An Example

- Guidelines

5 Number of Solutions

What is a "reduced" matrix?

A reduced matrix, also known as a reduced row echelon matrix, is a matrix that meets the four conditions named below. We'll soon describe each condition separately and clarify with examples.

Conditions for a Reduced Matrix

- Leading One
- Staircase
- Clear Column
- Zero Row

Note that these names are informal and are intended mainly as memory aids.

Some textbooks combine two of these conditions, so don't be alarmed to see a different number of conditions listed in other sources.

Leading One

The Leading One Condition

Moving from left to right, the first nonzero entry in each row (if there is one) is a 1 ; such 1 's are called leading ones.

Which Matrices Below Satisfy the Leading One Condition?

Leading One

The Leading One Condition

Moving from left to right, the first nonzero entry in each row (if there is one) is a 1 ; such 1's are called leading ones.

Which Matrices Below Satisfy the Leading One Condition?

$$
\left.\begin{array}{ccccc|c}
1 & 2 & 0 & 0 & 0 & 3 \\
0 & 0 & 1 & 0 & 0 & 5 \\
0 & 0 & 0 & 1 & 2 & 7 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{cc|c}
{\left[\begin{array}{lll|l}
1 & 2 & 0 \\
0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{rrr}
1 & 0 & 0
\end{array}\right)} \\
0 & 1 & 0 \\
0 \\
0 & 0 & -1
\end{array} 00\right] ~(\text { (a) } \quad \text { (b) } \quad \text { (c) }
$$

Leading One

The Leading One Condition

Moving from left to right, the first nonzero entry in each row (if there is one) is a 1 ; such 1 's are called leading ones.

Which Matrices Below Satisfy the Leading One Condition?

$\left[\begin{array}{lllll|l}1 & 2 & 0 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 & 0 & 5 \\ 0 & 0 & 0 & 1 & 2 & 7 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
(a)
(b)
$\left[\begin{array}{rrr|r}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0\end{array}\right]$
(c)

Yes ?

Leading One

The Leading One Condition

Moving from left to right, the first nonzero entry in each row (if there is one) is a 1; such 1's are called leading ones.

Which Matrices Below Satisfy the Leading One Condition?

$\left[\begin{array}{lllll|l}1 & 2 & 0 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 & 0 & 5 \\ 0 & 0 & 0 & 1 & 2 & 7 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
(a)
(b)

Yes Yes
$\left[\begin{array}{rrr|r}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0\end{array}\right]$
(c)

Leading One

The Leading One Condition

Moving from left to right, the first nonzero entry in each row (if there is one) is a 1; such 1's are called leading ones.

Which Matrices Below Satisfy the Leading One Condition?

$\left[\begin{array}{lllll|l}1 & 2 & 0 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 & 0 & 5 \\ 0 & 0 & 0 & 1 & 2 & 7 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
(a)
(b)

Yes
Yes
$\left[\begin{array}{rrr|r}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0\end{array}\right]$
(c)

No

Staircase

The Staircase Condition

Each leading one is to the right (not necessarily immediately to the right) of any leading one in a higher row.

Which Matrices Below Satisfy the Staircase Condition?

Staircase

The Staircase Condition

Each leading one is to the right (not necessarily immediately to the right) of any leading one in a higher row.

Which Matrices Below Satisfy the Staircase Condition?

$\left[\begin{array}{lllll|l}1 & 0 & 0 & 0 & 0 & 3 \\ 1 & 0 & 0 & 0 & 0 & 5 \\ 0 & 1 & 0 & 1 & 2 & 7 \\ 0 & 0 & 1 & 0 & 0 & 0\end{array}\right]$
(a)

(b)

(c)

Staircase

The Staircase Condition

Each leading one is to the right (not necessarily immediately to the right) of any leading one in a higher row.

Which Matrices Below Satisfy the Staircase Condition?

$\left[\begin{array}{lllll|l}1 & 0 & 0 & 0 & 0 & 3 \\ 1 & 0 & 0 & 0 & 0 & 5 \\ 0 & 1 & 0 & 1 & 2 & 7 \\ 0 & 0 & 1 & 0 & 0 & 0\end{array}\right]$
(a)

(b)

(c)

No ?

Staircase

The Staircase Condition

Each leading one is to the right (not necessarily immediately to the right) of any leading one in a higher row.

Which Matrices Below Satisfy the Staircase Condition?

No

$$
\left[\begin{array}{lllll|l}
1 & 0 & 0 & 0 & 0 & 3 \\
1 & 0 & 0 & 0 & 0 & 5 \\
0 & 1 & 0 & 1 & 2 & 7 \\
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

(a)
a)

(c)

(b)

Yes

Staircase

The Staircase Condition

Each leading one is to the right (not necessarily immediately to the right) of any leading one in a higher row.

Which Matrices Below Satisfy the Staircase Condition?

Clear Column

 60 MinutesG.W. Stanton (C) 2012

View the video.
Introduction
Row Operations

Reduced Form

Solving a System An Example Guidelines

Number of
Solutions
Summary

For tutoring by the author, contact Higher Math Help.

The Clear Column Condition

Each entry above and below a leading one is zero.

Which Matrices Below Satisfy the Clear Column Condition?

Why?

Remark: The Staircase Condition ensures that entries below a leading 1 are
0 , so some texts only emphasize that entries above a leading 1 are 0 . Either way, a reduced matrix has zeros above and below each leading 1

Clear Column

The Clear Column Condition

Each entry above and below a leading one is zero.

Which Matrices Below Satisfy the Clear Column Condition?

(a)

(b)
? ?

Remark: The Staircase Condition ensures that entries below a leading 1 are
0 , so some texts only emphasize that entries above a leading 1 are 0 . Either
way, a reduced matrix has zeros above and below each leading 1.

Clear Column

The Clear Column Condition

Each entry above and below a leading one is zero.

Which Matrices Below Satisfy the Clear Column Condition?

$\left[\begin{array}{ll|l}1 & 2 & 0 \\ 0 & 1 & 1\end{array}\right]$
(a)

Why?
(b)

No ?

Remark: The Staircase Condition ensures that entries below a leading 1 are
0 , so some texts only emphasize that entries above a leading 1 are 0 . Either
way, a reduced matrix has zeros above and below each leading 1.

Clear Column

The Clear Column Condition

Each entry above and below a leading one is zero.

Which Matrices Below Satisfy the Clear Column Condition?

(a)

Why?
(b)
Yes?

Remark: The Staircase Condition ensures that entries below a leading 1 are
0 , so some texts only emphasize that entries above a leading 1 are 0 . Either
way, a reduced matrix has zeros above and below each leading 1 .

Clear Column

The Clear Column Condition

Each entry above and below a leading one is zero.

Which Matrices Below Satisfy the Clear Column Condition?

(a)

No
Remark: The Staircase Condition ensures that entries below a leading 1 are
0 , so some texts only emphasize that entries above a leading 1 are 0 . Either way, a reduced matrix has zeros above and below each leading 1.

Clear Column

The Clear Column Condition

Each entry above and below a leading one is zero.

Which Matrices Below Satisfy the Clear Column Condition?

(a)
$\left[\begin{array}{ll|l}1 & 0 & 2 \\ 0 & 1 & 1\end{array}\right]$
(b)

Yes
Why?

In (b), the 2 is above a 1 , but not a leading 1 .

Remark: The Staircase Condition ensures that entries below a leading 1 are 0 , so some texts only emphasize that entries above a leading 1 are 0 . Either way, a reduced matrix has zeros above and below each leading 1.

Zero Row

 60 MinutesG.W. Stanton
(C) 2012

View the video.
Introduction
Row Operations

Reduced Form

Solving a System An Example Guidelines

Number of
Solutions
Summary

For tutoring by the author, contact Higher Math Help.

The Zero Row Condition

If there are any zero rows (rows consisting entirely of zeros), then they're at the bottom.

Which Matrices Below Satisfy the Zero Row Condition?

Zero Row

The Zero Row Condition

If there are any zero rows (rows consisting entirely of zeros), then they're at the bottom.

Which Matrices Below Satisfy the Zero Row Condition?

$$
\left[\begin{array}{lllll|l}
1 & 2 & 0 & 0 & 0 & 3 \\
0 & 0 & 1 & 0 & 0 & 5 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a)

(b)

(c)

Zero Row

The Zero Row Condition

If there are any zero rows (rows consisting entirely of zeros), then they're at the bottom.

Which Matrices Below Satisfy the Zero Row Condition?

$$
\left[\begin{array}{lllll|l}
1 & 2 & 0 & 0 & 0 & 3 \\
0 & 0 & 1 & 0 & 0 & 5 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a)

(b)

(c)

Yes
?
?

Zero Row

The Zero Row Condition

If there are any zero rows (rows consisting entirely of zeros), then they're at the bottom.

Which Matrices Below Satisfy the Zero Row Condition?

$$
\left[\begin{array}{lllll|l}
1 & 2 & 0 & 0 & 0 & 3 \\
0 & 0 & 1 & 0 & 0 & 5 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a)

Yes
No

(c)

Zero Row

The Zero Row Condition

If there are any zero rows (rows consisting entirely of zeros), then they're at the bottom.

Which Matrices Below Satisfy the Zero Row Condition?

$$
\left[\begin{array}{lllll|l}
1 & 2 & 0 & 0 & 0 & 3 \\
0 & 0 & 1 & 0 & 0 & 5 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a)

(b)

(c)

Yes
No
Yes

Quiz

Which of These Matrices Are Reduced?
G.W. Stanton (C) 2012

View the video.
Introduction
Row Operations

Reduced Form

Solving a System An Example Guidelines

Number of Solutions

Summary

For tutoring by the author, contact Higher Math Help.

Example

$$
\begin{array}{cc}
{\left[\begin{array}{llll|r}
1 & 0 & 2 & 0 & 3 \\
0 & 1 & 1 & 0 & -7 \\
0 & 0 & 0 & 1 & .5
\end{array}\right] \quad\left[\begin{array}{llll|r}
1 & 2 & 0 & 0 & 3 \\
0 & 1 & 1 & 0 & -7 \\
0 & 0 & 0 & 1 & .5
\end{array}\right]}
\end{array} \begin{array}{lll|l}
{\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]} \\
\text { Reduced? }
\end{array}
$$

Quiz

Which of These Matrices Are Reduced?

Row Reduction in

 60 MinutesG.W. Stanton (C) 2012

View the video.
Introduction
Row Operations
Reduced Form
Solving a System An Example Guidelines

Number of
Solutions
Summary

For tutoring by the author, contact Higher Math Help.

Example

$$
\begin{array}{cc}
{\left[\begin{array}{llll|r}
1 & 0 & 2 & 0 & 3 \\
0 & 1 & 1 & 0 & -7 \\
0 & 0 & 0 & 1 & .5
\end{array}\right] \quad\left[\begin{array}{llll|r}
1 & 2 & 0 & 0 & 3 \\
0 & 1 & 1 & 0 & -7 \\
0 & 0 & 0 & 1 & .5
\end{array}\right]}
\end{array} \begin{array}{ll}
{\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]} \\
\text { Yes Reduced? }
\end{array}
$$

Which of These Matrices Are Reduced?

View the video.
Introduction
Row Operations

Reduced Form

Solving a System An Example Guidelines

Number of Solutions

Summary

For tutoring by the author, contact Higher Math Help

Example

$$
\begin{aligned}
& {\left[\begin{array}{llll|r}
1 & 0 & 2 & 0 & 3 \\
0 & 1 & 1 & 0 & -7 \\
0 & 0 & 0 & 1 & .5
\end{array}\right]} \\
& \text { No } \\
& 1 \text { Leading One ? } \\
& 2 \text { Staircase * } \\
& 3 \text { Clear Column * } \\
& 4 \text { Zero Row * }
\end{aligned}
$$

After learning how to use the row operations to reduce a matrix, it will be
easier to decide if a matrix is reduced; we'll have another quiz in case you're
not convinced.

Which of These Matrices Are Reduced?

View the video.
Introduction
Row Operations

Reduced Form

Solving a System An Example Guidelines

Number of Solutions

Summary

For tutoring by the author, contact Higher Math Help.

Example

$$
\begin{aligned}
& {\left[\begin{array}{llll|r}
1 & 0 & 2 & 0 & 3 \\
0 & 1 & 1 & 0 & -7 \\
0 & 0 & 0 & 1 & .5
\end{array}\right]} \\
& \text { No } \\
& 1 \text { Leading One Yes } \\
& 2 \text { Staircase? } \\
& 3 \text { Clear Column * } \\
& 4 \text { Zero Row * }
\end{aligned}
$$

After learning how to use the row operations to reduce a matrix, it will be
easier to decide if a matrix is reduced; we'll have another quiz in case you're
not convinced.

Which of These Matrices Are Reduced?

View the video.
Introduction
Row Operations

Reduced Form

Solving a System An Example Guidelines

Number of Solutions

Summary

For tutoring by the author, contact Higher Math Help

Example

$$
\begin{aligned}
& {\left[\begin{array}{llll|r}
1 & 0 & 2 & 0 & 3 \\
0 & 1 & 1 & 0 & -7 \\
0 & 0 & 0 & 1 & .5
\end{array}\right]} \\
& \text { No } \\
& 1 \text { Leading One Yes } \\
& 2 \text { Staircase Yes } \\
& 3 \text { Clear Column? } \\
& 4 \text { Zero Row * }
\end{aligned}
$$

After learning how to use the row operations to reduce a matrix, it will be
easier to decide if a matrix is reduced; we'll have another quiz in case you're
not convinced.

Which of These Matrices Are Reduced?

View the video.
Introduction
Row Operations

Reduced Form

Solving a System An Example Guidelines

Number of Solutions

Summary

For tutoring by the author, contact Higher Math Help.

Example

$$
\begin{aligned}
& {\left[\begin{array}{llll|r}
1 & 0 & 2 & 0 & 3 \\
0 & 1 & 1 & 0 & -7 \\
0 & 0 & 0 & 1 & .5
\end{array}\right]} \\
& \text { No } \\
& 1 \text { Leading One Yes } \\
& 2 \text { Staircase Yes } \\
& 3 \text { Clear Column No } \\
& 4 \text { Zero Row ? }
\end{aligned}
$$

After learning how to use the row operations to reduce a matrix, it will be
easier to decide if a matrix is reduced; we'll have another quiz in case you're
not convinced. 60 Minutes
G.W. Stanton (C) 2012

View the video.
Introduction
Row Operations

Reduced Form

Solving a System An Example Guidelines

Number of Solutions

Summary

For tutoring by the author, contact Higher Math Help.

Example

$$
\left.\begin{array}{cccc|r}
{\left[\begin{array}{rrrr}
1 & 0 & 2 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right.} & -7 \\
.5
\end{array}\right] \quad\left[\begin{array}{llll|r}
1 & 2 & 0 & 0 & 3 \\
0 & 1 & 1 & 0 & -7 \\
0 & 0 & 0 & 1 & .5
\end{array}\right]
$$

After learning how to use the row operations to reduce a matrix, it will be
easier to decide if a matrix is reduced; we'll have another quiz in case you're
not convinced. 60 Minutes
G.W. Stanton (C) 2012

View the video.
Introduction
Row Operations

Reduced Form

Solving a System An Example Guidelines

Number of Solutions

Summary

For tutoring by the author, contact Higher Math Help.

Example

$$
\left.\begin{array}{cccc|r}
{\left[\begin{array}{llll|r}
1 & 0 & 2 & 0 & 3 \\
0 & 1 & 1 & 0 & -7 \\
0 & 0 & 0 & 1 & .5
\end{array}\right]} & {\left[\begin{array}{llll|r}
1 & 2 & 0 & 0 & 3 \\
0 & 1 & 1 & 0 & -7 \\
0 & 0 & 0 & 1 & .5
\end{array}\right]}
\end{array} \begin{array}{cc}
\text { No } \\
\text { Yes }
\end{array} \begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

After learning how to use the row operations to reduce a matrix, it will be
easier to decide if a matrix is reduced; we'll have another quiz in case you're
not convinced.

Example

$$
\left[\begin{array}{llll|r}
1 & 0 & 2 & 0 & 3 \\
0 & 1 & 1 & 0 & -7 \\
0 & 0 & 0 & 1 & .5
\end{array}\right] \quad\left[\begin{array}{llll|r}
1 & 2 & 0 & 0 & 3 \\
0 & 1 & 1 & 0 & -7 \\
0 & 0 & 0 & 1 & .5
\end{array}\right] \quad\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Yes
No
Yes
1 Leading One Yes
2 Staircase Yes
3 Clear Column No
4 Zero Row Yes
After learning how to use the row operations to reduce a matrix, it will be easier to decide if a matrix is reduced; we'll have another quiz in case you're not convinced.

Outline

Row Reduction in 60 Minutes
G.W. Stanton
(C) 2012

View the video.
Introduction
Row Operations
Reduced Form
Solving a System An Example Guidelines

Number of
Solutions
Summary

For tutoring by the author, contact
Higher Math Help.

1 Introduction
2 Row Operations
3 Reduced Form
4 Solving a System

- An Example
- Guidelines

5 Number of Solutions

Solving a System

It's time to solve our first system! Since the beginning of the notes, we've been working with the system below.

$$
\begin{array}{r}
3 x+6 y+12 z=9 \\
2 x+4 y-4 z=6 \\
y+4 z=7
\end{array}
$$

Remember that to solve it, we first form its augmented matrix.

$$
\left[\begin{array}{lll|l}
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ?
\end{array}\right]
$$

Next, we reduce this matrix.

Solving a System

It's time to solve our first system! Since the beginning of the notes, we've been working with the system below.

$$
\begin{array}{r}
3 x+6 y+12 z=9 \\
2 x+4 y-4 z=6 \\
y+4 z=7
\end{array}
$$

Remember that to solve it, we first form its augmented matrix.
$\left[\begin{array}{rrr|r}3 & 6 & 12 & 9 \\ 2 & 4 & -4 & 6 \\ 0 & 1 & 4 & 7\end{array}\right]$

Next, we reduce this matrix.

Brief Guidelines for Reducing a Matrix

To avoid common pitfalls, we need guidelines for reducing.

Brief Guidelines

1 Create leading 1 in first row.
2 Clear new leading 1's column. (make other entries 0).
3 Create leading 1 in second row.
4 Clear new leading 1's column.
5 Repeat.
We actually did the first few steps earlier (shown at right), but the guidelines will show us why we used each operation.
$\left[\begin{array}{rrr|r}3 & 6 & 12 & 9 \\ 2 & 4 & -4 & 6 \\ 0 & 1 & 4 & 7\end{array}\right]$
$\left[\begin{array}{rrr|r}1 & 2 & 4 & 3 \\ 2 & 4 & -4 & 6 \\ 0 & 1 & 4 & 7\end{array}\right]$
$\left[\begin{array}{rrrr|r}1 & 2 & 4 & 3 \\ 0 & 0 & -12 & 0 \\ 0 & 1 & 4 & 7\end{array}\right]$

$\left[\begin{array}{rrrr}1 & 2 & 4 & 3 \\ 0 & 1 & 4 & 3 \\ 0 & 0 & -12 & 0\end{array}\right]$

Creating a Leading 1

The guidelines tell us to begin by creating a leading 1 in the first row. We often create a row's leading 1 by multiplying by the reciprocal of its leading nonzero entry.

Example

The leading entry in Row 1 is 3 . The reciprocal of 3 is $\frac{1}{3}$.

$$
\left[\begin{array}{rrr|r}
3 & 6 & 12 & 9 \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right] \xrightarrow{\frac{1}{3} R_{1}}\left[\begin{array}{rrr|r}
? & * & * & * \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right]
$$

Creating a Leading 1

The guidelines tell us to begin by creating a leading 1 in the first row. We often create a row's leading 1 by multiplying by the reciprocal of its leading nonzero entry.

Example

The leading entry in Row 1 is 3 . The reciprocal of 3 is $\frac{1}{3}$.

$$
\left[\begin{array}{rrr|r}
3 & 6 & 12 & 9 \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right] \xrightarrow{\frac{1}{3} R_{1}}\left[\begin{array}{rrr|r}
1 & ? & * & * \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right]
$$

Creating a Leading 1

The guidelines tell us to begin by creating a leading 1 in the first row. We often create a row's leading 1 by multiplying by the reciprocal of its leading nonzero entry.

Example

The leading entry in Row 1 is 3 . The reciprocal of 3 is $\frac{1}{3}$.

$$
\left[\begin{array}{rrr|r}
3 & 6 & 12 & 9 \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right] \xrightarrow{\frac{1}{3} R_{1}}\left[\begin{array}{rrr|r}
1 & 2 & ? & * \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right]
$$

Creating a Leading 1

The guidelines tell us to begin by creating a leading 1 in the first row. We often create a row's leading 1 by multiplying by the reciprocal of its leading nonzero entry.

Example

The leading entry in Row 1 is 3 . The reciprocal of 3 is $\frac{1}{3}$.

$$
\left[\begin{array}{rrr|r}
3 & 6 & 12 & 9 \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right] \xrightarrow{\frac{1}{3} R_{1}}\left[\begin{array}{rrr|r}
1 & 2 & 4 & ? \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right]
$$

Creating a Leading 1

The guidelines tell us to begin by creating a leading 1 in the first row. We often create a row's leading 1 by multiplying by the reciprocal of its leading nonzero entry.

Example

The leading entry in Row 1 is 3 . The reciprocal of 3 is $\frac{1}{3}$.

$$
\left[\begin{array}{rrr|r}
3 & 6 & 12 & 9 \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right] \xrightarrow{\frac{1}{3} R_{1}}\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right]
$$

Clearing a Column

The guidelines tell us that we should now clear the leading 1's column. To do this, multiply by the opposite of the entry you're trying to clear, then add.

Example

We have a leading 1 in the first row. Let's use it to clear its column. To clear the 2 below the leading 1 , we use the opposite of 2 , which is -2 .

$$
\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
\hline 2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right] \quad \xrightarrow{-2 R_{1}+R_{2}} \quad\left[\begin{array}{lll|l}
1 & 2 & 4 & 3 \\
? & * & * & * \\
0 & 1 & 4 & 7
\end{array}\right]
$$

Clearing a Column

The guidelines tell us that we should now clear the leading 1's column. To do this, multiply by the opposite of the entry you're trying to clear, then add.

Example

We have a leading 1 in the first row. Let's use it to clear its column. To clear the 2 below the leading 1 , we use the opposite of 2 , which is -2 .

$$
\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
\hline 2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right] \quad \xrightarrow{-2 R_{1}+R_{2}} \quad\left[\begin{array}{lll|l}
1 & 2 & 4 & 3 \\
0 & ? & * & * \\
0 & 1 & 4 & 7
\end{array}\right]
$$

Clearing a Column

The guidelines tell us that we should now clear the leading 1's column. To do this, multiply by the opposite of the entry you're trying to clear, then add.

Example

We have a leading 1 in the first row. Let's use it to clear its column. To clear the 2 below the leading 1 , we use the opposite of 2 , which is -2 .

$$
\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
\hline 2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right] \quad \xrightarrow{-2 R_{1}+R_{2}} \quad\left[\begin{array}{lll|l}
1 & 2 & 4 & 3 \\
0 & 0 & ? & * \\
0 & 1 & 4 & 7
\end{array}\right]
$$

Clearing a Column

The guidelines tell us that we should now clear the leading 1's column. To do this, multiply by the opposite of the entry you're trying to clear, then add.

Example

We have a leading 1 in the first row. Let's use it to clear its column. To clear the 2 below the leading 1 , we use the opposite of 2 , which is -2 .

$$
\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
\hline 2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right] \quad \xrightarrow{-2 R_{1}+R_{2}} \quad\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 0 & -12 & ? \\
0 & 1 & 4 & 7
\end{array}\right]
$$

Clearing a Column

The guidelines tell us that we should now clear the leading 1's column. To do this, multiply by the opposite of the entry you're trying to clear, then add.

Example

We have a leading 1 in the first row. Let's use it to clear its column. To clear the 2 below the leading 1 , we use the opposite of 2 , which is -2 .

$$
\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
\hline 2 & 4 & -4 & 6 \\
0 & 1 & 4 & 7
\end{array}\right] \quad \xrightarrow{-2 R_{1}+R_{2}} \quad\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 0 & -12 & 0 \\
0 & 1 & 4 & 7
\end{array}\right]
$$

Another Way to Create a Leading 1

In the last step, we cleared the first leading 1's column. Now it's time to create a leading 1 in the second row. To get a leading 1 that will meet the - Staircase Condition , we sometimes need to interchange two rows.

Example

Since the leading nonzero entry in the second row, -12 , is to the right of the leading nonzero entry in the third row, 1, we interchange Rows 3 and 2.

$$
\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 0 & -12 & 0 \\
0 & 1 & 4 & 7
\end{array}\right] \xrightarrow{R_{2} \leftrightarrow R_{3}}\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right]
$$

Quiz
Can You Finish Reducing the Matrix?

Completing the Reduction

G.W. Stanton
(C) 2012

View the video.
Introduction
Row Operations

Reduced Form

Solving a System An Example Guidelines

Number of Solutions

Summary

For tutoring by the author, contact Higher Math Help.

$$
\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right] \quad \xrightarrow{?}
$$

Tip
When using a leading 1 to clear its column, you can perform more than one operation per step to save time.

Quiz
Can You Finish Reducing the Matrix?

Row Reduction in 60 Minutes
G.W. Stanton
(C) 2012

View the video.
Introduction
Row Operations
Reduced Form
Solving a System An Example Guidelines

Number of Solutions

Summary

For tutoring by the author, contact Higher Math Help.

Completing the Reduction

$$
\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right] \quad \xrightarrow{-2 R_{2}+R_{1}} \quad\left[\begin{array}{rrr|r}
* & * & * & * \\
? & ? & ? & ? \\
? & ? & ? & ?
\end{array}\right]
$$

Tip

When using a leading 1 to clear its column, you can perform more than one operation per step to save time.

Quiz
Can You Finish Reducing the Matrix?

Row Reduction in 60 Minutes
G.W. Stanton

Completing the Reduction

$$
\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right] \quad \xrightarrow{-2 R_{2}+R_{1}} \quad\left[\begin{array}{rrr|r}
? & * & * & * \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right]
$$

Tip

When using a leading 1 to clear its column, you can perform more than one operation per step to save time.

Quiz
Can You Finish Reducing the Matrix?

Row Reduction in 60 Minutes
G.W. Stanton

Completing the Reduction

$$
\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right] \quad \xrightarrow{-2 R_{2}+R_{1}} \quad\left[\begin{array}{rrr|r}
1 & ? & * & * \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right]
$$

Tip

When using a leading 1 to clear its column, you can perform more than one operation per step to save time.

Quiz
Can You Finish Reducing the Matrix?

Row Reduction in 60 Minutes
G.W. Stanton

Completing the Reduction

$$
\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right] \quad \xrightarrow{-2 R_{2}+R_{1}} \quad\left[\begin{array}{rrr|r}
1 & 0 & ? & * \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right]
$$

Tip

When using a leading 1 to clear its column, you can perform more than one operation per step to save time.

Quiz
Can You Finish Reducing the Matrix?

Row Reduction in 60 Minutes
G.W. Stanton

Completing the Reduction

$$
\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right] \quad \xrightarrow{-2 R_{2}+R_{1}} \quad\left[\begin{array}{rrr|r}
1 & 0 & -4 & ? \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right]
$$

Tip

When using a leading 1 to clear its column, you can perform more than one operation per step to save time.

Quiz
Can You Finish Reducing the Matrix?

Row Reduction in 60 Minutes
G.W. Stanton

Completing the Reduction

$$
\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right] \quad \xrightarrow{-2 R_{2}+R_{1}} \quad\left[\begin{array}{rrr|r}
1 & 0 & -4 & -11 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right]
$$

$$
\xrightarrow{?}
$$

Tip

When using a leading 1 to clear its column, you can perform more than one operation per step to save time.

Quiz
Can You Finish Reducing the Matrix?

Completing the Reduction

G.W. Stanton

Tip

$$
\begin{array}{lll|r|r|r|r}
{\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right]} & \xrightarrow{-2 R_{2}+R_{1}}
\end{array}\left[\begin{array}{rrr|r}
1 & 0 & -4 & -11 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right] \quad \xrightarrow{-\frac{1}{12} R_{3}}
$$

When using a leading 1 to clear its column, you can perform more than one operation per step to save time.

Quiz
Can You Finish Reducing the Matrix?

Completing the Reduction

$$
\begin{aligned}
& {\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right] \quad \xrightarrow{-2 R_{2}+R_{1}} \quad\left[\begin{array}{rrr|r}
1 & 0 & -4 & -11 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right] \quad \xrightarrow{-\frac{1}{12} R_{3}}} \\
& {\left[\begin{array}{rrr|r}
1 & 0 & -4 & -11 \\
0 & 1 & 4 & 7 \\
? & ? & ? & ?
\end{array}\right]}
\end{aligned}
$$

Tip

When using a leading 1 to clear its column, you can perform more than one operation per step to save time.

Quiz
Can You Finish Reducing the Matrix?

Completing the Reduction

$$
\begin{aligned}
& {\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right]}
\end{aligned} \xrightarrow{-2 R_{2}+R_{1}} \quad\left[\begin{array}{rrr|r}
1 & 0 & -4 & -11 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right] \quad \xrightarrow{-\frac{1}{12} R_{3}}
$$

Tip

When using a leading 1 to clear its column, you can perform more than one operation per step to save time.

Completing the Reduction

G.W. Stanton

Tip

 operation per step to save time.$$
\begin{array}{lll|r}
{\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right]} & \xrightarrow{-2 R_{2}+R_{1}} & {\left[\begin{array}{rrr|r}
1 & 0 & -4 & -11 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right]} & \xrightarrow{-\frac{1}{12} R_{3}} \\
{\left[\begin{array}{rrr|r}
1 & 0 & -4 & -11 \\
0 & 1 & 4 & 7 \\
0 & 0 & 1 & 0
\end{array}\right]} & \xrightarrow{-4 R_{3}+R_{2}} & {\left[\begin{array}{lll|l}
* & * & * & * \\
* & * & * & * \\
? & ? & ? & ?
\end{array}\right]}
\end{array}
$$

When using a leading 1 to clear its column, you can perform more than one

Completing the Reduction

G.W. Stanton

Tip

$$
\begin{array}{lll}
{\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right]} & \xrightarrow{-2 R_{2}+R_{1}} & {\left[\begin{array}{rrr|r}
1 & 0 & -4 & -11 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right]}
\end{array} \xrightarrow{-\frac{-1}{12} R_{3}}
$$

When using a leading 1 to clear its column, you can perform more than one operation per step to save time.

Completing the Reduction

G.W. Stanton

Tip

$$
\begin{array}{lll}
{\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right]} & \xrightarrow{-2 R_{2}+R_{1}} \\
{\left[\begin{array}{rrr|r}
1 & 0 & -4 & -11 \\
0 & 1 & 4 & 7 \\
0 & 0 & 1 & 0
\end{array}\right]} & \xrightarrow{-4 R_{3}+R_{2}} & {\left[\begin{array}{rrr|r}
1 & 0 & -4 & -11 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right]}
\end{array} \begin{aligned}
& \xrightarrow{-\frac{1}{12} R_{3}}
\end{aligned}
$$

When using a leading 1 to clear its column, you can perform more than one operation per step to save time.

Completing the Reduction

G.W. Stanton

Tip

$$
\begin{array}{lll}
{\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right]} & \xrightarrow{-2 R_{2}+R_{1}} & {\left[\begin{array}{rrr|r}
1 & 0 & -4 & -11 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right]}
\end{array} \begin{aligned}
& \xrightarrow{-\frac{1}{12} R_{3}} \\
& {\left[\begin{array}{rrr|r}
1 & 0 & -4 & -11 \\
0 & 1 & 4 & 7 \\
0 & 0 & 1 & 0
\end{array}\right]}
\end{aligned}
$$

When using a leading 1 to clear its column, you can perform more than one operation per step to save time.

Completing the Reduction

G.W. Stanton

Tip

$$
\begin{array}{lll}
{\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right]} & \xrightarrow{-2 R_{2}+R_{1}} & {\left[\begin{array}{rrr|r}
1 & 0 & -4 & -11 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right]}
\end{array} \begin{aligned}
& \xrightarrow{-\frac{1}{12} R_{3}} \\
& {\left[\begin{array}{rrr|r}
1 & 0 & -4 & -11 \\
0 & 1 & 4 & 7 \\
0 & 0 & 1 & 0
\end{array}\right]}
\end{aligned}
$$

When using a leading 1 to clear its column, you can perform more than one operation per step to save time.

Completing the Reduction

G.W. Stanton

Tip

$$
\begin{array}{lll}
{\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right]} & \xrightarrow{-2 R_{2}+R_{1}} & {\left[\begin{array}{rrr|r}
1 & 0 & -4 & -11 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right]}
\end{array} \xrightarrow{-\frac{-1}{12} R_{3}}
$$

When using a leading 1 to clear its column, you can perform more than one operation per step to save time.

Completing the Reduction

$$
\left.\begin{array}{lll|r}
{\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right]} & \xrightarrow{-2 R_{2}+R_{1}} & {\left[\begin{array}{rrr|r}
1 & 0 & -4 & -11 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right]}
\end{array} \xrightarrow{ } \begin{array}{rrr|r}
1 & 0 & -4 & -11 \\
0 & 1 & 4 & 7 \\
0 & 0 & 1 & 0
\end{array}\right] \quad \xrightarrow{\xrightarrow{-\frac{1}{12} R_{3}}}
$$

Tip

When using a leading 1 to clear its column, you can perform more than one operation per step to save time.

Completing the Reduction

$$
\begin{aligned}
& {\left[\begin{array}{lll|l}
1 & 2 & 4 & 3 \\
0 & 1 & 4 & 7
\end{array}\right] \quad \xrightarrow{-2 R_{2}+R_{1}}} \\
& {\left[\begin{array}{rrr|r}
1 & 0 & -4 & -11 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right] \quad \xrightarrow{-\frac{1}{12} R_{3}}} \\
& {\left[\begin{array}{rrr|r}
1 & 0 & -4 & -11 \\
0 & 1 & 4 & 7 \\
0 & 0 & 1 & 0
\end{array}\right] \quad \xrightarrow{\xrightarrow{4 R_{3}+R_{1}}}} \\
& {\left[\begin{array}{ccc|c}
1 & ? & * & * \\
0 & 1 & 0 & 7 \\
0 & 0 & 1 & 0
\end{array}\right]}
\end{aligned}
$$

Tip

When using a leading 1 to clear its column, you can perform more than one operation per step to save time.

Completing the Reduction

$$
\left.\begin{array}{lll|r}
{\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right]} & \xrightarrow{-2 R_{2}+R_{1}} & {\left[\begin{array}{rrr|r}
1 & 0 & -4 & -11 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right]}
\end{array} \xrightarrow{ } \begin{array}{rrr|r}
1 & 0 & -4 & -11 \\
0 & 1 & 4 & 7 \\
0 & 0 & 1 & 0
\end{array}\right] \quad \xrightarrow{\xrightarrow{-\frac{1}{12} R_{3}}}
$$

Tip

When using a leading 1 to clear its column, you can perform more than one operation per step to save time.

Completing the Reduction

$$
\begin{aligned}
& {\left[\begin{array}{lll|l}
1 & 2 & 4 & 3 \\
0 & 1 & 4 & 7
\end{array}\right] \quad \xrightarrow{-2 R_{2}+R_{1}}} \\
& {\left[\begin{array}{rrr|r}
1 & 0 & -4 & -11 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right] \quad \xrightarrow{-\frac{1}{12} R_{3}}} \\
& {\left[\begin{array}{rrr|r}
1 & 0 & -4 & -11 \\
0 & 1 & 4 & 7 \\
0 & 0 & 1 & 0
\end{array}\right] \quad \xrightarrow{\xrightarrow{4 R_{3}+R_{1}}}} \\
& {\left[\begin{array}{lll|l}
1 & 0 & 0 & ? \\
0 & 1 & 0 & 7 \\
0 & 0 & 1 & 0
\end{array}\right]}
\end{aligned}
$$

Tip

When using a leading 1 to clear its column, you can perform more than one operation per step to save time.

Completing the Reduction

$$
\begin{array}{lll|r}
{\left[\begin{array}{rrr|r}
1 & 2 & 4 & 3 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right]} & \xrightarrow{-2 R_{2}+R_{1}} & {\left[\begin{array}{rrr|r}
1 & 0 & -4 & -11 \\
0 & 1 & 4 & 7 \\
0 & 0 & -12 & 0
\end{array}\right]} & \xrightarrow{-\frac{1}{12} R_{3}} \\
{\left[\begin{array}{rrr|r}
1 & 0 & -4 & -11 \\
0 & 1 & 4 & 7 \\
0 & 0 & 1 & 0
\end{array}\right]} & \xrightarrow{\xrightarrow{-4 R_{3}+R_{1}+R_{2}}}
\end{array}
$$

Tip

When using a leading 1 to clear its column, you can perform more than one operation per step to save time.

Converting Back to a System of Equations

 60 MinutesG.W. Stanton (C) 2012

View the video.
Introduction
Row Operations Reduced Form

Solving a System An Example Guidelines

Number of Solutions Summary

For tutoring by the author, contact Higher Math Help.

Obtaining the Solution

$$
\left[\begin{array}{rrr|r}
1 & 0 & 0 & -11 \\
0 & 1 & 0 & 7 \\
0 & 0 & 1 & 0
\end{array}\right] \quad \longrightarrow \quad \begin{aligned}
& x=-11 \\
& y=7 \\
& z=0
\end{aligned}
$$

We can also write the solution as $(-11,7,0)$.

> We've solved our first system! To be safe, let's check our answer: plug it into each equation in the original system. If any equation is false (such as $3=5$), then $(-11,7,0)$ is not actually a solution.

Cheoking the solution

Converting Back to a System of Equations

Obtaining the Solution
\(\left[\begin{array}{rrr|r}1 \& 0 \& 0 \& -11

0 \& 1 \& 0 \& 7

0 \& 0 \& 1 \& 0\end{array}\right] \quad \longrightarrow \quad\)| $x=-11$ | |
| :--- | :--- |
| $y=7$ | We can also write the |
| $z=0$ | solution as $(-11,7,0)$. |

We've solved our first system! To be safe, let's check our answer: plug it into each equation in the original system. If any equation is false (such as $3=5$), then $(-11,7,0)$ is not actually a solution.

Checking the solution

Converting Back to a System of Equations

Obtaining the Solution

$$
\left[\begin{array}{lll|r}
1 & 0 & 0 & -11 \\
0 & 1 & 0 & 7 \\
0 & 0 & 1 & 0
\end{array}\right] \quad \longrightarrow \quad \begin{aligned}
& x=-11 \\
& y=7 \\
& z=0
\end{aligned}
$$

We can also write the solution as $(-11,7,0)$.

We've solved our first system! To be safe, let's check our answer: plug it into each equation in the original system. If any equation is false (such as $3=5$), then $(-11,7,0)$ is not actually a solution.
Checking the solution

$$
\begin{aligned}
3 x+6 y+12 z & =9 \\
2 x+4 y-4 z & =6 \\
y+4 z & =7
\end{aligned} \longrightarrow \quad \begin{aligned}
3(-11)+6(7)+12(0) & =9 \\
2(-11)+4(7)-4(0) & =6 \\
(7)+4(0) & =7
\end{aligned}
$$

Guidelines for Reducing a Matrix, Revisited

We can avoid trouble by sticking to the following guidelines.

Guidelines

1. Beginning with first row ...
(a) ?

Remark: it's possible that two people applying these guidelines to the same problem will not use the same sequence of row operations. However, they will always get the same reduced matrix.

Guidelines for Reducing a Matrix, Revisited

We can avoid trouble by sticking to the following guidelines.

Guidelines

1. Beginning with first row ...
(a) Create leading 1: Which operation(s) do we want to use?

Remark: it's possible that two people applying these guidelines to the same problem will not use the same sequence of row operations. However, they will always get the same reduced matrix.

Guidelines for Reducing a Matrix, Revisited

We can avoid trouble by sticking to the following guidelines.

Guidelines

1. Beginning with first row ...
(a) Create leading 1: multiply by reciprocal , or interchange rows.
(b) What's next?

Remark: it's possible that two people applying these guidelines to the same problem will not use the same sequence of row operations. However, they will always get the same reduced matrix.

Guidelines for Reducing a Matrix, Revisited

We can avoid trouble by sticking to the following guidelines.

Guidelines

1. Beginning with first row ...
(a) Create leading 1: multiply by reciprocal , or interchange rows.
(b) Clear its column: Which operation(s) do we want to use?

Remark: it's possible that two people applying these guidelines to the same
problem will not use the same sequence of row operations. However, they
will always get the same reduced matrix.

Guidelines for Reducing a Matrix, Revisited

We can avoid trouble by sticking to the following guidelines.

Guidelines

1. Beginning with first row ...
(a) Create leading 1: multiply by reciprocal , or interchange rows.
(b) Clear its column: multiply by opposite and add.
2. Then what?

Remark: it's possible that two people applying these guidelines to the same
problem will not use the same sequence of row operations. However, they
will always get the same reduced matrix.

Guidelines for Reducing a Matrix, Revisited

We can avoid trouble by sticking to the following guidelines.

Guidelines

1. Beginning with first row ...
(a) Create leading 1: multiply by reciprocal , or interchange rows.
(b) Clear its column: multiply by opposite and add.
2. Create leading 1 in second row, clear its column.
3. And then?

Remark: it's possible that two people applying these guidelines to the same
problem will not use the same sequence of row operations. However, they
will always get the same reduced matrix.

Guidelines for Reducing a Matrix, Revisited

We can avoid trouble by sticking to the following guidelines.

Guidelines

1. Beginning with first row ...
(a) Create leading 1: multiply by reciprocal , or interchange rows.
(b) Clear its column: multipy by opposite and add.
2. Create leading 1 in second row, clear its column.
3. Repeat with each row (except for zero rows).

Remark: it's possible that two people applying these guidelines to the same
problem will not use the same sequence of row operations. However, they
will always get the same reduced matrix.

Guidelines for Reducing a Matrix, Revisited

We can avoid trouble by sticking to the following guidelines.

Guidelines

1. Beginning with first row ...
(a) Create leading 1: multiply by reciprocal , or interchange rows.
(b) Clear its column: multiply by opposite and add.
2. Create leading 1 in second row, clear its column.
3. Repeat with each row (except for zero rows).

Remark: it's possible that two people applying these guidelines to the same problem will not use the same sequence of row operations. However, they will always get the same reduced matrix.

Two Ways to Decide When a Matrix Is Reduced

In a previous •quiz, we decided if a matrix was reduced by checking the four required conditions. We're ready for another approach that often takes less effort.

How to Decide When a Matrix Is Reduced

- Check each of the four required conditions, or
- Attempt to reduce the matrix according to our guidelines.
- If there is nothing to do, the matrix is already reduced!
- If there is work to do, the matrix is not reduced!

Next, we'll take our second quiz, as promised

Two Ways to Decide When a Matrix Is Reduced

In a previous \bullet quiz, we decided if a matrix was reduced by checking the four required conditions. We're ready for another approach that often takes less effort.

How to Decide When a Matrix Is Reduced

- Check each of the four required conditions, or
- Attempt to reduce the matrix according to our guidelines.
- If there is nothing to do, the matrix is already reduced!
- If there is work to do, the matrix is not reduced!

Next, we'll take our second quiz, as promised.

For tutoring by the author, contact
Higher Math Help.

Two Ways to Decide When a Matrix Is Reduced

In a previous \bullet quiz, we decided if a matrix was reduced by checking the four required conditions. We're ready for another approach that often takes less effort.

How to Decide When a Matrix Is Reduced

- Check each of the four required conditions, or
- Attempt to reduce the matrix according to our guidelines.
- If there is nothing to do, the matrix is already reduced!
- If there is work to do, the matrix is not reduced!

Next, we'll take our second quiz, as promised.

Another Quiz

Which of These Matrices Are Reduced?

Row Reduction in 60 Minutes
G.W. Stanton (C) 2012

View the video.
Introduction
Row Operations
Reduced Form
Solving a System An Example Guidelines

Number of Solutions

Summary

For tutoring by the author, contact
Higher Math Help.

Example

$\left[\begin{array}{lll|l}1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
Reduced?
$\left[\begin{array}{lll|l}1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
Reduced?

Reduced?

Another Quiz

Which of These Matrices Are Reduced?

Row Reduction ir

 60 MinutesG.W. Stanton (C) 2012

View the video.
Introduction
Row Operations
Reduced Form
Solving a System An Example Guidelines

Number of Solutions

Summary

For tutoring by the author, contact
Higher Math Help.

Example

$\left[\begin{array}{lll\|l}1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$	$\left[\begin{array}{lll\|l}1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
No, must clear fourth column.	

Reduced?

Another Quiz

Which of These Matrices Are Reduced?

Row Reduction in 60 Minutes
G.W. Stanton (C) 2012

View the video.
Introduction
Row Operations
Reduced Form
Solving a System An Example Guidelines

Number of Solutions

Summary

For tutoring by the author, contact
Higher Math Help.

Example

$$
\begin{aligned}
& {\left[\begin{array}{lll|l}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]} \\
& \text { No, must clear } \\
& \text { fourth column. }
\end{aligned}
$$

Reduced?

Another Quiz

Which of These Matrices Are Reduced?

Row Reduction in 60 Minutes
G.W. Stanton (C) 2012

View the video.
Introduction
Row Operations
Reduced Form
Solving a System An Example Guidelines

Number of Solutions

Summary

For tutoring by the author, contact
Higher Math Help.

Example

\[

\]

$\left[\begin{array}{lll|l}1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0\end{array}\right]$

No, must switch Rows 2 and 3.

Outline

Row Reduction in 60 Minutes
G.W. Stanton
(c) 2012

View the video.
Introduction
Row Operations
Reduced Form
Solving a System
An Example Guidelines

Number of
Solutions
Summary

For tutoring by the author, contact
Higher Math Help.

1 Introduction

2 Row Operations
3 Reduced Form

4 Solving a System - An Example - Guidelines

5 Number of Solutions

How Many Solutions Are Possible?
 The Graphical Perspective

Earlier, we solved a system of equations and found exactly one solution: $\cdot(-11,7,0)$. However, not every system of linear equations has exactly one solution.

Can a system of linear equations have exactly two solutions? The answer turns out to be "no." How many solutions can a system of linear equations have? We'll investigate the different possibilities next.

To begin, it will help us to look at solutions from a graphical perspective.

For tutoring by the author, contact
Higher Math Help.

Does the Point Lie on the Graph?

Does the point $(1,4)$ lie on the graph of $2 x+3 y=6$? Since $2(1)+3(4) \neq 6$, $(1,4)$ does not lie on the graph. If plugging in a point's coordinates results in a true equation, then the point does lie on the graph.

Does $(4,3)$ lie on the graph of $7 x+5 y=35$?

Does the Point Lie on the Graph?

Does the point $(1,4)$ lie on the graph of $2 x+3 y=6$? Since $2(1)+3(4) \neq 6$, $(1,4)$ does not lie on the graph. If plugging in a point's coordinates results in a true equation, then the point does lie on the graph.
Does $(4,3)$ lie on the graph of $7 x+5 y=35$?

What do you think?

In summary, the graph of an equation consists of those points whose
coordinates make the equation true.

Does the Point Lie on the Graph?

Does the point $(1,4)$ lie on the graph of $2 x+3 y=6$? Since $2(1)+3(4) \neq 6$, $(1,4)$ does not lie on the graph. If plugging in a point's coordinates results in a true equation, then the point does lie on the graph.
Does $(4,3)$ lie on the graph of $7 x+5 y=35$?

$$
\begin{aligned}
& 7(4)+5(3) \neq 35 \\
& \Rightarrow \text { not on graph }
\end{aligned}
$$

In summary, the graph of an equation consists of those points whose
coordinates make the equation true.

Does the Point Lie on the Graph?

Does the point $(1,4)$ lie on the graph of $2 x+3 y=6$? Since $2(1)+3(4) \neq 6$, $(1,4)$ does not lie on the graph. If plugging in a point's coordinates results in a true equation, then the point does lie on the graph.
Does $(4,3)$ lie on the graph of $7 x+5 y=35$?

$$
\begin{aligned}
& 7(4)+5(3) \neq 35 \\
& \Rightarrow \text { not on graph }
\end{aligned}
$$

In summary, the graph of an equation consists of those points whose coordinates make the equation true.

Solutions and Graphs

We called $\cdot(-11,7,0)$ a solution to our first system of equations, because when we substituted 11,7 , and 0 for x, y, and z, each equation was made true (was satisfied).

Similarly, $(3,6)$ is a solution to the system
because this point satisfies each equation. In other mords,

Solutions and Graphs

We called $\cdot(-11,7,0)$ a solution to our first system of equations, because when we substituted 11,7 , and 0 for x, y, and z, each equation was made true (was satisfied).

Similarly, $(3,6)$ is a solution to the system

$$
\begin{array}{r}
x+y=9 \\
2 x-y=0
\end{array}
$$

because this point satisfies each equation.

In other words,

Solutions and Graphs

We called $\cdot(-11,7,0)$ a solution to our first system of equations, because when we substituted 11,7 , and 0 for x, y, and z, each equation was made true (was satisfied).

Similarly, $(3,6)$ is a solution to the system

$$
\begin{array}{r}
x+y=9 \\
2 x-y=0
\end{array}
$$

because this point satisfies each equation.
In other words, a solution is a point that lies on the graph of each equation.

The Three Cases (Graphical Perspective)

How many solutions can a linear system have? Let's say we're given equations for two lines. The number of solutions is the number of points where the lines intersect.

Try drawing graphs that show three different ways the lines can intersect (or fail to intersect).

The Three Cases (Graphical Perspective)

How many solutions can a linear system have? Let's say we're given equations for two lines. The number of solutions is the number of points where the lines intersect.

Try drawing graphs that show three different ways the lines can intersect (or fail to intersect).

Although these pictures only represent the two-variable case (x and y),

The Three Cases
 (Graphical Perspective)

How many solutions can a linear system have? Let's say we're given equations for two lines. The number of solutions is the number of points where the lines intersect.

Try drawing graphs that show three different ways the lines can intersect (or fail to intersect).

Although these pictures only represent the two-variable case (x and y)

The Three Cases (Graphical Perspective)

How many solutions can a linear system have? Let's say we're given equations for two lines. The number of solutions is the number of points where the lines intersect.

Try drawing graphs that show three different ways the lines can intersect (or fail to intersect).

Unique Solution
Although these pictures only represent the two-variable case (x and y),

The Three Cases
 (Graphical Perspective)

How many solutions can a linear system have? Let's say we're given equations for two lines. The number of solutions is the number of points where the lines intersect.

Try drawing graphs that show three different ways the lines can intersect (or fail to intersect).

No Solution

Infinite Solution

Although these pictures only represent the two-variable case (x and y), a linear system will always have no solution at all, exactly one solution, or infinitely many solutions, even with more than two variables.

The Unique Solution (Algebraic Perspective)

How can you determine the number of solutions from the augmented matrix, once it's reduced? If there is a unique solution, it will be right in front of us, just like when we solved our first system.

Example: Unique Solution

We have $x=7, y=-2$, and $z=5$, so there is one solution $(7,-2,5)$. If it's not clear why this is one solution and not three,

The Unique Solution (Algebraic Perspective)

How can you determine the number of solutions from the augmented matrix, once it's reduced? If there is a unique solution, it will be right in front of us, just like when we solved our first system.

Example: Unique Solution

$\left[\begin{array}{rrr|r}1 & 0 & 0 & 7 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 5\end{array}\right]$

We have $x=7, y=-2$, and $z=5$, so there is one solution ($7,-2,5$). If it's not clear why this is one solution and not three, ...

The Unique Solution (Algebraic Perspective)

How can you determine the number of solutions from the augmented matrix, once it's reduced? If there is a unique solution, it will be right in front of us, just like when we solved our first system.

Example: Unique Solution

\(\left[\begin{array}{lll|r}1 \& 0 \& 0 \& 7

0 \& 1 \& 0 \& -2

0 \& 0 \& 1 \& 5\end{array}\right] \quad \longrightarrow \quad\)| We have $x=7, y=-2$, and $z=5$, so there is one |
| :--- |
| solution $(7,-2,5)$. If it's not clear why this is one |
| solution and not three, \ldots |

Hmmm. Can you think of a way to make sense of this?

The Unique Solution (Algebraic Perspective)

How can you determine the number of solutions from the augmented matrix, once it's reduced? If there is a unique solution, it will be right in front of us, just like when we solved our first system.

Example: Unique Solution

$\left[\begin{array}{rrr|r}1 & 0 & 0 & 7 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 5\end{array}\right]$

We have $x=7, y=-2$, and $z=5$, so there is one solution $(7,-2,5)$. If it's not clear why this is one solution and not three, ...

Hmmm. Can you think of a way to make sense of this?
... it helps to think of (7,-2,5) as a single point [in three dimensions], just as an ordered pair (x, y) represents a single point in the $x y$-plane.

No Solution - Part 1

(Algebraic Perspective)

How will we know if a system of linear equations has no solution? As always, we begin by reducing the augmented matrix and converting back to equations.

Example: No Solution

The equations $x=7$ and $y=-2$ correspond to the first two rows. What equation corresponds to the third row?

No Solution - Part 1

(Algebraic Perspective)

How will we know if a system of linear equations has no solution? As always, we begin by reducing the augmented matrix and converting back to equations.

Example: No Solution

$\left[\begin{array}{rrr|r}1 & 0 & 0 & 7 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 0 & 1\end{array}\right]$

The equations $x=7$ and $y=-2$ correspond to the first two rows. What equation corresponds to the third row?

No Solution - Part 1
 (Algebraic Perspective)

How will we know if a system of linear equations has no solution? As always, we begin by reducing the augmented matrix and converting back to equations.

Example: No Solution

\(\left[\begin{array}{rrr|r}1 \& 0 \& 0 \& 7

0 \& 1 \& 0 \& -2

0 \& 0 \& 0 \& 1\end{array}\right] \quad \longrightarrow \quad\)| We know $0 \cdot($ any number $)=0$, so $0 x=0$, |
| :--- |
| $0 y=0$, and $0 z=0$. Therefore, $0 x+0 y+0 z$ |
| is just 0, which means the third row tells us |
| $0=1!$ |

No Solution - Part 1
 (Algebraic Perspective)

How will we know if a system of linear equations has no solution? As always, we begin by reducing the augmented matrix and converting back to equations.

Example: No Solution

$$
\left[\begin{array}{lll|r}
1 & 0 & 0 & 7 \\
0 & 1 & 0 & -2 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \longrightarrow \quad \begin{aligned}
& \text { We know } 0 \cdot(\text { any number })=0, \text { so } 0 x=0, \\
& 0 y=0, \text { and } 0 z=0 \text {. Therefore, } 0 x+0 y+0 z \\
& \text { is just } 0, \text { which means the third row tells us } \\
& 0=1!
\end{aligned}
$$

How can we make sense of this result?

No Solution - Part 1

(Algebraic Perspective)

How will we know if a system of linear equations has no solution? As always, we begin by reducing the augmented matrix and converting back to equations.

Example: No Solution

$\left[\begin{array}{rrr|r}1 & 0 & 0 & 7 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 0 & 1\end{array}\right]$

We know $0 \cdot$ (any number) $=0$, so $0 x=0$, $0 y=0$, and $0 z=0$. Therefore, $0 x+0 y+0 z$ is just 0 , which means the third row tells us $0=1$!

How can we make sense of this result?
Since there are no values for x, y, and z that make $0 x+0 y+0 z=1$ true, the other two equations don't matter: it's impossible for all three equations to be satisfied, so the system has no solution.

No Solution - Part 2

(Algebraic Perspective)

Row Reduction in 60 Minutes
G.W. Stanton
(C) 2012

View the video.
Introduction
Row Operations Reduced Form
Solving a System An Example Guidelines

Number of Solutions Summary

Whenever there is no solution, there will be the equation $0=1 \ldots$
. . basically. If the system has no solution, then as long as the augmented matrix has been reduced, it will always contain a row corresponding to $0=1$.

In practice, however, it's not always necessary to fully reduce the augmented matrix when a system has no solution. For example, if the augmented matrix contains a row corresponding to $0=5$, we can conclude that the given system has no solution (without continuing to reduce), because there are no values of x, y, and z that satisfy this equation.

For tutoring by the author, contact Higher Math Help.

No Solution - Part 2

(Algebraic Perspective)

Whenever there is no solution, there will be the equation $0=1 \ldots$
... basically. If the system has no solution, then as long as the augmented matrix has been reduced, it will always contain a row corresponding to $0=1$.

In practice, however, it's not always necessary to fully reduce the augmented matrix when a system has no solution. For example, if the augmented matrix contains a row corresponding to $0=5$, we can conclude that the given system has no solution (without continuing to reduce), because there are no values of x, y, and z that satisfy this equation

No Solution - Part 2

(Algebraic Perspective)

Whenever there is no solution, there will be the equation $0=1 \ldots$
... basically. If the system has no solution, then as long as the augmented matrix has been reduced, it will always contain a row corresponding to $0=1$.

In practice, however, it's not always necessary to fully reduce the augmented matrix when a system has no solution. For example, if the augmented matrix contains a row corresponding to $0=5$, we can conclude that the given system has no solution (without continuing to reduce), because there are no values of x, y, and z that satisfy this equation.

Infinitely Many Solutions - Part 1

(Algebraic Perspective)

Row Reduction in 60 Minutes
G.W. Stanton
(C) 2012

View the video.
Introduction
Row Operations Reduced Form
Solving a System An Example Guidelines

Number of Solutions Summary

For tutoring by the author, contact Higher Math Help.

How will we know if a system of linear equations has infinitely many solutions?

Example: Infinitely Many Solutions

Infinitely Many Solutions - Part 1

(Algebraic Perspective)

How will we know if a system of linear equations has infinitely many solutions?

Example: Infinitely Many Solutions

$\left[\begin{array}{lllll|l}1 & 1 & 0 & 4 & 0 & 2 \\ 0 & 0 & 1 & 3 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0\end{array}\right]$

Is this matrix reduced? Using r, s, t, u, and v, what equations correspond to this matrix?

Infinitely Many Solutions - Part 1

(Algebraic Perspective) 60 Minutes

How will we know if a system of linear equations has infinitely many solutions?

Example: Infinitely Many Solutions

\(\left[\begin{array}{lllll|l}1 \& 1 \& 0 \& 4 \& 0 \& 2

0 \& 0 \& 1 \& 3 \& 0 \& 1

0 \& 0 \& 0 \& 0 \& 1 \& 0\end{array}\right] \quad \longrightarrow \quad\)| $r+s+4 u$ | $=2$ |
| ---: | :--- |
| $t+3 u$ | $=1$ |
| v | $=0$ |

[Yes, the matrix is reduced.]

Infinitely Many Solutions - Part 1

(Algebraic Perspective)

How will we know if a system of linear equations has infinitely many solutions?

Example: Infinitely Many Solutions

\(\left[\begin{array}{lllll|l}1 \& 1 \& 0 \& 4 \& 0 \& 2

0 \& 0 \& 1 \& 3 \& 0 \& 1

0 \& 0 \& 0 \& 0 \& 1 \& 0\end{array}\right] \quad \longrightarrow \quad\)| $r+s+4 u$ | $=2$ |
| ---: | :--- |
| $t+3 u$ | $=1$ |
| v | $=0$ |

[Yes, the matrix is reduced.]
How can we be sure there are infinitely many solutions?

Infinitely Many Solutions - Part 1

(Algebraic Perspective)

How will we know if a system of linear equations has infinitely many solutions?

Example: Infinitely Many Solutions

\(\left[\begin{array}{lllll|l}1 \& 1 \& 0 \& 4 \& 0 \& 2

0 \& 0 \& 1 \& 3 \& 0 \& 1

0 \& 0 \& 0 \& 0 \& 1 \& 0\end{array}\right] \quad \longrightarrow \quad\)| $r+s+4 u$ | $=2$ |
| ---: | :--- |
| $t+3 u$ | $=1$ |
| v | $=0$ |

[Yes, the matrix is reduced.]

How can we be sure there are infinitely many solutions?
There must be at least one solution, because we don't see $0=1$. We don't immediately see a unique solution; this tells us the solution isn't unique.
There must be infinitely many solutions.

Infinitely Many Solutions - Part 2

(Algebraic Perspective) 60 Minutes

Great! We know there are infinitely many solutions. But wait, there's more! Just one piece of the puzzle remains.

Determining the General Solution

1 Identify the columns (to the left of the rightmost column) that do not contain a leading one.
We will use the word parameter to refer to each of the variables corresponding to these columns.
2 Move the parameters to the other side of each equation.

For tutoring by the author, contact Higher Math Help.

Next, we'll apply these steps to complete the example from the previous slide.

Infinitely Many Solutions - Part 2

(Algebraic Perspective)

Great! We know there are infinitely many solutions. But wait, there's more! Just one piece of the puzzle remains.

Determining the General Solution

1 Identify the columns (to the left of the rightmost column) that do not contain a leading one.
We will use the word parameter to refer to each of the variables corresponding to these columns.
2 Move the parameters to the other side of each equation.

Next, we'll apply these steps to complete the example from the previous slide.

Infinitely Many Solutions - Part 2

(Algebraic Perspective)

Great! We know there are infinitely many solutions. But wait, there's more! Just one piece of the puzzle remains.

Determining the General Solution

1 Identify the columns (to the left of the rightmost column) that do not contain a leading one.
We will use the word parameter to refer to each of the variables corresponding to these columns.
2 Move the parameters to the other side of each equation.

Next, we'll apply these steps to complete the example from the previous slide.

Infinitely Many Solutions - Part 3

(Algebraic Perspective)

Example: Infinitely Many Solutions (Continued)

$\left[\begin{array}{lllll|l}1 & 1 & 0 & 4 & 0 & 2 \\ 0 & 0 & 1 & 3 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0\end{array}\right]$

Which columns do not contain a leading one?

What do we get when we convert back to equations?

Although there are infinitely many solutions, we cannot always obtain a solution by arbitrarily choosing numbers for each variable. choose numers for the PARAMETERS s and

For example, if we choose $s=1$ and $u=2$, our equations tell us $r=2-(1)-4(2)=-7$ and $t=1-3(2)=-5$, and we obtain a solution $(-7,1,-5,2,0)$. Different values for s and u produce different solutions.

Infinitely Many Solutions - Part 3

(Algebraic Perspective)

Example: Infinitely Many Solutions (Continued)

$\left[\begin{array}{lllll|l}1 & 1 & 0 & 4 & 0 & 2 \\ 0 & 0 & 1 & 3 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0\end{array}\right]$

$$
\begin{aligned}
r+s+4 u & =2 \\
t+3 u & =1 \\
v & =0
\end{aligned}
$$

What do we get when we move the parameters over?
[The parameters are highlighted.]

Although there are infinitely many solutions, we cannot always obtain a solution by arbitrarily choosing numbers for each variable.

For example, if we choose $s=1$ and $u=2$, our equations tell us

$(-7,1,-5,2,0)$. Different values for s and u produce different solutions.

Infinitely Many Solutions - Part 3

(Algebraic Perspective)

Example: Infinitely Many Solutions (Continued)

$$
\left[\begin{array}{rrrrr|r}
1 & 1 & 0 & 4 & 0 & 2 \\
0 & 0 & 1 & 3 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right] \quad \begin{array}{rlrl}
r+s+4 u & =2 & r & =2-s-4 u \\
t+3 u & =1 & t & =1-3 u \\
v & =0 & v & =0
\end{array}
$$

[The parameters are highlighted.]

Although there are infinitely many solutions, we cannot always obtain a solution by arbitrarily choosing numbers for each variable.

For example, if we choose $s=1$ and $u=2$, our equations tell us

$(-7,1,-5,2,0)$. Different values for s and u produce different solutions.

Infinitely Many Solutions - Part 3

(Algebraic Perspective)

Example: Infinitely Many Solutions (Continued)

\(\left[\begin{array}{rllll|l}1 \& 1 \& 0 \& 4 \& 0 \& 2

0 \& 0 \& 1 \& 3 \& 0 \& 1

0 \& 0 \& 0 \& 0 \& 1 \& 0\end{array}\right] \quad\)| $r+s+4 u$ | $=2$ | r | $=2-s-4 u$ |
| ---: | :--- | ---: | :--- |
| $t+3 u$ | $=1$ | | $t=1-3 u$ |
| v | $=0$ | v | $=0$ |

[The parameters are highlighted.]

Although there are infinitely many solutions, we cannot always obtain a solution by arbitrarily choosing numbers for each variable. We CAN arbitrarily choose numers for the PARAMETERS s and u.

For example, if we choose $s=1$ and $u=2$, our equations tell us $r=2-(1)-4(2)=-7$ and $t=1-3(2)=-5$, and we obtain a solution $(-7,1,-5,2,0)$. Different values for s and u produce different solutions.

Infinitely Many Solutions - Part 3
 (Algebraic Perspective)

Example: Infinitely Many Solutions (Continued)

$$
\left[\begin{array}{rrrrr|r}
1 & 1 & 0 & 4 & 0 & 2 \\
0 & 0 & 1 & 3 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right] \quad \begin{array}{rlrl}
r+s+4 u & =2 & r & =2-s-4 u \\
t+3 u & =1 & t & =1-3 u \\
v & =0 & v & =0
\end{array}
$$

[The parameters are highlighted.]

Although there are infinitely many solutions, we cannot always obtain a solution by arbitrarily choosing numbers for each variable. We CAN arbitrarily choose numers for the PARAMETERS s and u.

For example, if we choose $s=1$ and $u=2$, our equations tell us $r=2-(1)-4(2)=-7$ and $t=1-3(2)=-5$, and we obtain a solution $(-7,1,-5,2,0)$. Different values for s and u produce different solutions.

Infinitely Many Solutions - Part 4

(Algebraic Perspective)

When you need to carefully express your answer, you have a variety of options. Different teachers will tend to follow different conventions, but a few options are given below, using the previous example.

> In the second option, the equations $s=s$ and $u=u$ indicate that s and u may be specified arbitrarily. The third option makes use of something called set-builder notation (you can ignore this option if your course doesn't use this notation), and it indicates that we are working only with what are known as real numbers (these notes and most introductory courses work only with real numbers).

Infinitely Many Solutions - Part 4
 (Algebraic Perspective)

When you need to carefully express your answer, you have a variety of options. Different teachers will tend to follow different conventions, but a few options are given below, using the previous example.

■ $r=2-s-4 u, t=1-3 u, v=0$; s and u are arbitrary
■ $r=2-s-4 u, s=s, t=1-3 u, u=u$, and $v=0$
■ $\{(2-s-4 u, s, 1-3 u, u, 0): s, u \in \mathbb{R}\}$

In the second option, the equations $s=s$ and $u=u$ indicate that s and u may be specified arbitrarily. The third option makes use of something called set-builder notation (you can ignore this option if your course doesn't use this notation), and it indicates that we are working only with what are known as real numbers (these notes and most introductory courses work only with real numbers)

Infinitely Many Solutions - Part 4
 (Algebraic Perspective)

When you need to carefully express your answer, you have a variety of options. Different teachers will tend to follow different conventions, but a few options are given below, using the previous example.

■ $r=2-s-4 u, t=1-3 u, v=0$; s and u are arbitrary
■ $r=2-s-4 u, s=s, t=1-3 u, u=u$, and $v=0$
■ $\{(2-s-4 u, s, 1-3 u, u, 0): s, u \in \mathbb{R}\}$

In the second option, the equations $s=s$ and $u=u$ indicate that s and u may be specified arbitrarily. The third option makes use of something called set-builder notation (you can ignore this option if your course doesn't use this notation), and it indicates that we are working only with what are known as real numbers (these notes and most introductory courses work only with real numbers).

What We've Accomplished

We now know how to solve any system of linear equations in any number of variables!

Woo hoo!

All that remains on the road to mastery is practice.

Feedback

Thanks for taking the time to work through these notes!

Comments and Suggestions

If you ...

- found these notes helpful,
- found a typo, or
- have a suggestion, please let Higher Math Help know.

